This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Syntheses and Characterization of 1,1'-Bis(3-Pyridylethynyl)Ferrocene and 1,1'-Bis(4-Pyridylethynyl)Ferrocene

Ekkehard Lindner; Ruifa Zong; Klaus Eichele

To cite this Article Lindner, Ekkehard , Zong, Ruifa and Eichele, Klaus(2001) 'Syntheses and Characterization of 1,1'-Bis(3-Pyridylethynyl)Ferrocene and 1,1'-Bis(4-Pyridylethynyl)Ferrocene', Phosphorus, Sulfur, and Silicon and the Related Elements, 169: 1, 219-222

To link to this Article: DOI: 10.1080/10426500108546628 URL: http://dx.doi.org/10.1080/10426500108546628

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Syntheses and Characterization of 1,1'-Bis(3-Pyridylethynyl)Ferrocene and 1,1'-Bis(4-Pyridylethynyl)Ferrocene

EKKEHARD LINDNER, RUIFA ZONG and KLAUS EICHELE

Institut für Anorganische Chemie, Auf der Morgenstelle 18, Universität Tübingen, D-72076 Tübingen, Germany

Two novel disubstituted ferrocene, 1,1-bis(3-pyridylethynyl)ferrocene 1 and 1,1-bis(4-pyridylethynyl)ferrocene 2, were synthesized and fully characterized by elemental analysis, ¹H NMR, ¹³C NMR, IR, and X-ray crystallography. Compound 1crystallizes in monoclinic, space group Cc. *a*=17.26Å, *b*=9.77Å, *c*=10.85Å, β=105.45; R₁ =0.0399, wR₂=0.1077, GooF=1.023. The two arms of the ferrocene are parallel, which will play an important role both in the coordination chemistry and electronic communication of the ferrocene.

Keywords: disubstituted; ferrocene; ethynyl; pyridine

INTRODUCTION

Electronic communication has received much attention and is a field with great potential of development. Intramolecular electronic communication between two or more metal centers, one of which is ferrocene subunit, is a more active field in this regard. The extent of intramolecular electronic communication mainly depends on the nature of the metals [1], the bridges between the metal centers [2-3], and the chelating sites [1]. Ferrocene has become a choice due to its well-known redox activity and the ease of synthesis. Carbonrich bridges such as -C=C-, -C=C-C₆H₄-C=C- and the combinations of the two and chelating sites like pyridine and polypyridine have been a study point. However, most published work concerns "body" ferrocenes with either the carbon-rich

"arms" or pyridine and polypyridine "hands". Only a few monosubstituted ferrocenes with one such arm and hand have been studied [4]. This defect prompted us to design and construct ferrocenes with two arms and two hands. Our research interest is to synthesize disubstituted ferrocenes with linear, up to nanoscale, all conjugated, carbon-rich, rigid bridges and polypyridine hands, and to investigate intramolecular long-range, two-way electronic communications. In this paper, we present our preliminary study on the model precursors, 1,1'-bis(3-pyridylethynyl)ferrocene 1 and 1,1'-bis(4-pyridylethynyl)ferrocene 2.

RESULTS AND DISCUSSION

Compounds 1 and 2 were synthesized by palladium-promoted coupling reactions of 1,1'-diiodoferrocene and 3-pyridylethyne or 4-pyridylethyne respectively in satisfying yield. Standard palladium-promoted coupling reactions were also applied in the preparation of 3-[2-(trimethylsilyl)-1-ethynyl]pyridine and 4-[2-(trimethylsilyl)-1-ethynyllpyridine, which were converted to the terminal alkynes by potassium fluoride in methanol. The deprotonation of the commercial reagent, 4-bromopyridine hydrochloride described in literature [5] was proved to be not easy and not necessary. Instead of 4-bromopyridine, 4-bromopyridine hydrochloride was used without further treatment and the coupling reaction of it with trimethylsilylacetylene in diethylamine was found to be quantitative (based on ¹H NMR analysis). The 4ethynylpyridine was purified by sublimination under vacuum. Compounds 1 and 2 were purified by chromatography. Slow diffusion of n-hexane into the solution of 1 in dichloromethane gave red needle crystals. The X-ray crystallographic data are listed in TABLE 1.

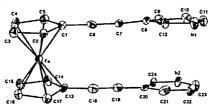


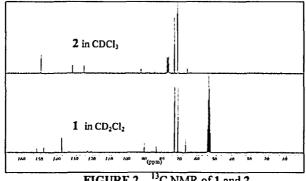
FIGURE 1. Crystal structure of 1, drawn at 20% thermal ellipsoids. Hydrogen atoms omitted for clarity. Distances (Å) and torsion angles (deg): C3-C16: 3.2154, C1-C13: 3.3634, C6-C18: 3.4670, C7-C19: 3.4815, C8-C20: 3.6130, C11-C23: 3.7673, C1-C13-C20-C8: 0.78; C8-C11-C23-C20: 11.39

goodness of fit on F2

R indices (all data) largest diff. peak and hole

final R indices (obsd. data)

TABLE 1. Crystal Data and Structure Refinement for 1 empirical formula C24H16FeN2 formula weight 388.24 temperature -100°C crystal system monoclinic space group Cc unit cell dimensions $a = 17.26 \text{\AA}$ b=9.77Å c=10.85Å B=105.45° V=1764.56 7 = 4density (calcd.) 1.461 no.of reflns collected 8054 unique refins $4057 (3491 I \ge 2\sigma (I))$ Full-matrix least-squares on F² refinement data/restraints/params 4057 / 3 / 338


The two arms of the ferrocene are parallel as shown in FIGURE 1, suggesting that π - π stacking is preferred. Racemic isomers are found in the crystals of 1. Both 1 and 2 give us clean ¹³C NMR spectra as shown in FIGURE 2. The broadened ¹³C NMR of 1 in solution may imply free rotation of the two side chains along the bridging axes, which might be important for its complexation with other metal.

1.023

 $R_1 = 0.0399$, $wR_2 = 0.1077$

 $R_1 = 0.0474$, $wR_2 = 0.1141$

0.25 and -0.35

¹³C NMR of 1 and 2 FIGURE 2.

EXPERIMENTAL

Schlenk technique under argon was applied to all the coupling reactions. Common methods were used to dry the solvents. All chemicals were purchased from ARCOS and Fluka and were used as received.

Synthesis of 4-ethynylpyridine. To the well degased 4-bromopyridine hydrochloride diethylamine solution, trimethylsilylacetylene and Pd(PPh₃)₂Cl₂ / CuI were added successively. The mixture was stirred overnight, and the solvent was removed. The residue was dissolved in methanol and KF was added. Some hours later, methanol was removed, followed by sublimination.

3-Ethynylpyridine. Similar method was used.

1.1'-Bis(3-pyridylethynyl)ferrocene 1. To a well degased solution of 1,1'-diiodoferrocene in diisopropylamine were added 3-pyridylethylene, Pd(PPh₃)₂Cl₂ / CuI. After reluxing overnight, the solvent was removed and some water was added. The product was extracted with dichloromethane, dried over MgSO₄. Chromatography gave compound 1 as red power. Yield 30%. EI-MS, 388.0 (M⁺),165.7 (Cp-C₂-Py ⁺); IR (KBr), 2206cm-1 (s, v_{C=C}); H NMR (CD₂Cl₂), 8.60 (s, 2H), 8.45 (s, 2H), 7.61 (d, J=7.69Hz, 2H), 7.14 (m, 2H), 4.58 (s, 4H), 4.37 (s, 4H); ¹³C NMR (CD₂Cl₂), 152.33, 148.38,138.27, 123.50, 121.40, 90.77, 84.02, 73.59, 71.60, 67.16.

1.1'-Bis(4-pyridylethynyl)ferrocene 2. Red solid, Yield 33%.EI-MS, 387.9 (M^{+}), 165.9 ($Cp-C_2-Py^{+}$); IR (KBr), 2205cm-1(s, $v_{C=C}$), $v_{C=C}$), $v_{C=C}$ 1 NMR (CDCl₃), 8.48 (d, J=5.34Hz, 4H), 7.23 (d, J=5.34Hz, 4H), 4.60 (t, J=1.88Hz, 4H), 4.40 (t, J=1.88Hz, 4H); v_{C} 1 NMR (CDCl₃), 149.75, 131.96, 125.43, 92.53, 84.73, 73.50, 71.56, 66.09; Anal. Calcd (Found) for v_{C_2} 4H₁₆FeN₂ C, 74.25 (73.12); H, 4.15 (3.90); N, 7.22 (6.98).

ACKNOLEDGEMENT

This research was supported by Deutsche Forschungsgemeinschaft.

References

- [1] H. Plenio and D. Burth, Organometallics, 15, 4054-4062 (1996).
- [2] J. Alvarez and A. E. Kaifer, Organometallics, 18, 5733-5734 (1999).
- [3] N. D. Jones and M. O. Wolf, D.M. Giaquinta, Organometallics, 16, 1352-1354 (1997).
- [4] J-T. Lin, S-S. Sun, J-J. Wu, L.Lee, K-J. Lin, and Y-F. Huang, *Inorg. Chem.*, 34, 2323–2333 (1995).
- [5] R. Ziessel, J. Suffert, M-T. Youinou J. Org. Chem., 61, 6535-6546, (1996).